×
真空科学与技术学报

核科学技术论文_基于ARIMA和LSTM组合模型的核

文章摘要:为了对核电厂主泵的运行过程进行监测和追踪,进而提高主泵的预警能力,提出了基于差分自回归移动平均(ARIMA)和长短期记忆(LSTM)神经网络组合模型的主泵状态预测方法,并用该方法对某核电厂主泵止推轴承温度和可控泄漏流量进行单步和多步预测,以根均方误差(RMSE)为指标对预测精度进行评估。结果表明,所建立的ARIMA和LSTM神经网络组合模型能够对主泵的状态进行准确的预测和追踪,并且组合模型的预测精度要优于ARIMA和LSTM单一模型,尤其在多步预测中,组合模型的优势更加明显。

文章关键词:

项目基金: